where

$$
\begin{equation*}
\mathrm{m}=4 \pi / \alpha \tag{99}
\end{equation*}
$$

If N_{S} is the number of segments then $m=2 N_{S}$.
The shear force $\tau_{r} \theta$ must balance the pin force P shown in Figures 80 and 81 . From Figure 80, it is seen for equilibrium of P, that it is required

$$
\mathrm{t} \int_{\alpha / 4}^{\alpha / 2} \tau_{\mathrm{r} \theta} \cos \left(\theta-\frac{\alpha}{4}\right) \mathrm{r}_{2} \mathrm{~d} \theta=\mathrm{P} / 2
$$

where t is the segment thickness. Substitution of (98c) into this integral and integration gives

$$
\begin{equation*}
\tau=\frac{\left(\mathrm{m}^{2}-1\right) \mathrm{P}}{2 \mathrm{mtr}_{2}(1+\cos \pi / \mathrm{m})} \tag{100}
\end{equation*}
$$

where P must be in equilibrium with p_{1} as shown in Figure 8l, i. e.,

$$
\begin{equation*}
\mathrm{P}=\mathrm{p}_{1} \mathrm{r}_{1} \mathrm{t} \tag{101}
\end{equation*}
$$

A- 53122
FIGURE 81. LOADING OF PINS

For radial equilibrium of the loadings shown in Figure $80, p_{2}$ can be found by integration, i. e.,

$$
\left.2 \int_{0}^{\alpha / 2}\left[\tau_{r} \theta^{\sin \theta-\sigma_{r}} \cos \theta\right] r_{2} d \theta\right|_{r_{2}}=2 p_{1} r_{1} \sin \frac{\alpha}{2}
$$

Substitution for $\tau_{r} \theta$ and σ_{r} from ($98 b, c$) and integration gives

$$
\begin{equation*}
\mathrm{p}_{2}=\frac{1}{\left(\mathrm{~m}^{2}-2\right)}\left[\left(\mathrm{m}^{2}-1\right) \frac{\mathrm{p}_{1}}{\mathrm{k}_{2}}-\mathrm{m} \tau\right] \tag{102}
\end{equation*}
$$

The stresses in a pin segment are found by superposition of three solutions: the Lamé solution for constant pressures p_{1} and p_{2} at the r_{1} and r_{2} respectively, a sinusoidal solution for the variable σ_{r} loading $-p_{2} \cos m \theta$ at r_{2}, and a bending solution to remove the hoop stress of the first two solutions from the sides of the segments. The Lamé solution is given by Equations $(13 a-c)$ and $(14 a, b)$ in the text. The sinusoidal solution, taken from the $\cos m \theta$ part of Equation (81) in Timoshenko and Goodier(41), is

$$
\begin{align*}
\sigma_{r}= & {\left[m(1-m) a_{m} \rho^{m-2}+(2-m)(1+m) b_{m} \rho^{m}\right.} \\
& \left.-m(m+1) c_{m} \rho^{m-2}+(2+m)(1-m) d_{m} \rho^{-m}\right] \cos m \theta \\
\sigma_{\theta}= & {\left[m(m-1) a_{m} \rho^{m-2}+(m+2)(m+1) b_{m} \rho^{m}\right.} \\
& \left.+m(m+1) c_{m} \rho^{-m-2}+(m-2)(m-1) d_{m} \rho^{-m}\right] \cos m \theta \tag{103a-c}\\
\tau_{r \theta}= & m\left[(m-1) a_{m} \rho^{m-2}+(m+1) b_{m} \rho^{m}-(m+1) c_{m} \rho^{-m-2}\right. \\
& \left.+(-m+1) d_{m} \rho^{-m}\right] \sin m \theta
\end{align*}
$$

where

$$
\begin{equation*}
\rho \equiv r / r_{2} \tag{104}
\end{equation*}
$$

From the boundary conditions $\sigma_{r}=0, \tau_{r} \theta=0$ at r_{1} and $\sigma_{r}=-p_{2} \cos m \theta, \tau_{r} \theta=-\tau \sin m \theta$ at r_{2} for the sinusoidal solution, the constants a_{m}, b_{m}, c_{m}, and d_{m} are found to be

$$
\begin{aligned}
\mathrm{a}_{\mathrm{m}}= & \left(\frac{-\mathrm{p}_{2}}{2}+\frac{\tau}{2}\right)\left[\frac{m^{2}+\left(1-m^{2}\right) \mathrm{k}_{2}^{2}-\mathrm{k}_{2}^{2 \mathrm{~m}+2}}{\beta_{2}(\mathrm{~m}-1)}\right] \\
& +\left(\frac{-\mathrm{p}_{2}}{2}-\frac{\tau}{2}\right) \frac{\mathrm{k}_{2}^{2}\left(1-\mathrm{k}_{2}^{2 m}\right)}{\beta_{2}}
\end{aligned}
$$

